Measuring Dark Matter With MilkyWay@home
Abstract
We perform N-body simulations of two component dwarf galaxies (dark matter and stars follow separate distributions) falling into the Milky Way and the forming of tidal streams. Using MilkyWay@home we optimize the parameters of the progenitor dwarf galaxy and the orbital time to fit the simulated distribution of stars along the tidal stream to the observed distribution of stars. Our initial dwarf galaxy models are constructed with two separate Plummer profiles (one for the dark matter and one for the baryonic matter), sampled using a generalized distribution function for spherically symmetric systems. We perform rigorous testing to ensure that our simulated galaxies are in virial equilibrium, and stable over a simulation time. The N-body simulations are performed using a Barnes-Hut Tree algorithm. Optimization traverses the likelihood surface from our six model parameters using particle swarm and differential evolution methods. We have generated simulated data with known model parameters that are similar to those of the Orphan Stream. We show that we are able to recover a majority of our model parameters, and most importantly the mass-to-light ratio of the now disrupted progenitor galaxy, using MilkyWay@home. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.
- Publication:
-
American Astronomical Society Meeting Abstracts #227
- Pub Date:
- January 2016
- Bibcode:
- 2016AAS...22713911S