An alternative validation strategy for the Planck cluster catalogue and y-distortion maps
Abstract
We present an all-sky map of the y-type distortion calculated from the full mission Planck High Frequency Instrument (HFI) data using the recently proposed approach to component separation, which is based on parametric model fitting and model selection. This simple model-selection approach enables us to distinguish between carbon monoxide (CO) line emission and y-type distortion, something that is not possible using the internal linear combination based methods. We create a mask to cover the regions of significant CO emission relying on the information in the χ2 map that was obtained when fitting for the y-distortion and CO emission to the lowest four HFI channels. We revisit the second Planck cluster catalogue and try to quantify the quality of the cluster candidates in an approach that is similar in spirit to Aghanim et al. (2015, A&A, 580, A138). We find that at least 93% of the clusters in the cosmology sample are free of CO contamination. We also find that 59% of unconfirmed candidates may have significant contamination from molecular clouds. We agree with Planck Collaboration XXVII (2016, A&A, in press) on the worst offenders. We suggest an alternative validation strategy of measuring and subtracting the CO emission from the Planck cluster candidates using radio telescopes, thus improving the reliability of the catalogue. Our CO mask and annotations to the Planck cluster catalogue, identifying cluster candidates with possible CO contamination, are made publicly available.
The full Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A48- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- July 2016
- DOI:
- 10.1051/0004-6361/201526479
- arXiv:
- arXiv:1505.00778
- Bibcode:
- 2016A&A...592A..48K
- Keywords:
-
- cosmic background radiation;
- cosmology: observations;
- ISM: clouds;
- radio lines: ISM;
- methods: data analysis;
- galaxies: clusters: intracluster medium;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Published version