On Minimizing Crossings in Storyline Visualizations
Abstract
In a storyline visualization, we visualize a collection of interacting characters (e.g., in a movie, play, etc.) by $x$-monotone curves that converge for each interaction, and diverge otherwise. Given a storyline with $n$ characters, we show tight lower and upper bounds on the number of crossings required in any storyline visualization for a restricted case. In particular, we show that if (1) each meeting consists of exactly two characters and (2) the meetings can be modeled as a tree, then we can always find a storyline visualization with $O(n\log n)$ crossings. Furthermore, we show that there exist storylines in this restricted case that require $\Omega(n\log n)$ crossings. Lastly, we show that, in the general case, minimizing the number of crossings in a storyline visualization is fixed-parameter tractable, when parameterized on the number of characters $k$. Our algorithm runs in time $O(k!^2k\log k + k!^2m)$, where $m$ is the number of meetings.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2015
- DOI:
- 10.48550/arXiv.1509.00442
- arXiv:
- arXiv:1509.00442
- Bibcode:
- 2015arXiv150900442K
- Keywords:
-
- Computer Science - Data Structures and Algorithms;
- Computer Science - Computational Geometry;
- F.2.2;
- G.2.2
- E-Print:
- 6 pages, 4 figures. To appear at the 23rd International Symposium on Graph Drawing and Network Visualization (GD 2015)