Free energy pathways of a multistable liquid crystal device
Abstract
The planar bistable device [Tsakonas \textit{et al., Appl. Phys. Lett.}, 2007, {\textbf{90}}, 111913] is known to have two distinct classes of stable equilibria: the diagonal and rotated solutions. We model this device within the two-dimensional Landau-de Gennes theory, with a surface potential and without any external fields. We systematically compute a special class of transition pathways, referred to as minimum energy pathways, between the stable equilibria that provide new information about how the equilibria are connected in the Landau-de Gennes free energy landscape. These transition pathways exhibit an intermediate transition state, which is a saddle point of the Landau-de Gennes free energy. We numerically compute the structural details of the transition states, the optimal transition pathways and the free energy barriers between the equilibria, as a function of the surface anchoring strength. For strong anchoring, the transition pathways are mediated by defects whereas we get defect-free transition pathways for moderate and weak anchoring. In the weak anchoring limit, we recover a cusp catastrophe situation for which the rotated state acts as a transition state connecting two different diagonal states.
- Publication:
-
Soft Matter
- Pub Date:
- 2015
- DOI:
- 10.1039/C5SM00578G
- arXiv:
- arXiv:1503.05514
- Bibcode:
- 2015SMat...11.4809K
- Keywords:
-
- Condensed Matter - Soft Condensed Matter;
- Condensed Matter - Materials Science;
- Physics - Computational Physics
- E-Print:
- Soft Matter 11, 4809 - 4817 (2015)