The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning
Abstract
An active area of research in the fields of machine learning and statistics is the development of causal discovery algorithms, the purpose of which is to infer the causal relations that hold among a set of variables from the correlations that these exhibit . We apply some of these algorithms to the correlations that arise for entangled quantum systems. We show that they cannot distinguish correlations that satisfy Bell inequalities from correlations that violate Bell inequalities, and consequently that they cannot do justice to the challenges of explaining certain quantum correlations causally. Nonetheless, by adapting the conceptual tools of causal inference, we can show that any attempt to provide a causal explanation of nonsignalling correlations that violate a Bell inequality must contradict a core principle of these algorithms, namely, that an observed statistical independence between variables should not be explained by fine-tuning of the causal parameters. In particular, we demonstrate the need for such fine-tuning for most of the causal mechanisms that have been proposed to underlie Bell correlations, including superluminal causal influences, superdeterminism (that is, a denial of freedom of choice of settings), and retrocausal influences which do not introduce causal cycles.
- Publication:
-
New Journal of Physics
- Pub Date:
- March 2015
- DOI:
- 10.1088/1367-2630/17/3/033002
- arXiv:
- arXiv:1208.4119
- Bibcode:
- 2015NJPh...17c3002W
- Keywords:
-
- Quantum Physics
- E-Print:
- 29 pages, 28 figs. New in v2: a section presenting in detail our characterization of Bell's theorem as a contradiction arising from (i) the framework of causal models, (ii) the principle of no fine-tuning, and (iii) certain operational features of quantum theory