Thermomechanical properties and performance of ceramic resonators for wireless pressure reading at high temperatures
Abstract
This paper reports on the design, fabrication, and thermomechanical study of ceramic LC resonators for wireless pressure reading, verified at room temperature, at 500 °C and at 1000 °C for pressures up to 2.5 bar. Five different devices were fabricated from high-temperature co-fired ceramics (HTCC) and characterized. Alumina green tape sheets were screen printed with platinum paste, micromachined, laminated, and fired. The resulting samples were 21 mm × 19 mm with different thicknesses. An embedded communicator part was integrated with either a passive backing part or with a pressure-sensing element, including an 80 µm thick and 6 mm diameter diaphragm. The study includes measuring thermally and mechanically induced resonance frequency shifts, and thermally induced deformations. For the pressure sensor device, contributions from changes in the relative permittivity and from expanding air trapped in the cavity were extracted. The devices exhibited thermomechanical robustness during heating, regardless of the thickness of the backing. The pressure sensitivity decreased with increasing temperature from 15050 ppm bar-1 at room temperature to 2400 ppm bar-1 at 1000 °C, due to the decreasing pressure difference between the external pressure and the air pressure inside the cavity.
- Publication:
-
Journal of Micromechanics and Microengineering
- Pub Date:
- September 2015
- DOI:
- Bibcode:
- 2015JMiMi..25i5016S