Turbulent RayleighBénard convection described by projected dynamics in phase space
Abstract
RayleighBénard convection, i.e. the flow of a fluid between two parallel plates that is driven by a temperature gradient, is an idealised setup to study thermal convection. Of special interest are the statistics of the turbulent temperature field, which we are investigating and comparing for three different geometries, namely convection with periodic horizontal boundary conditions in three and two dimensions as well as convection in a cylindrical vessel, in order to work out similarities and differences. To this end, we derive an exact evolution equation for the temperature probability density function (PDF). Unclosed terms are expressed as conditional averages of velocities and heat diffusion, which are estimated from direct numerical simulations. This framework lets us identify the average behaviour of a fluid particle by revealing the mean evolution of fluid of different temperatures in different parts of the convection cell. We connect the statistics to the dynamics of RayleighBénard convection, giving deeper insights into the temperature statistics and transport mechanisms. We find that the average behaviour is described by closed cycles in phase space that reconstruct the typical RayleighBénard cycle of fluid heating up at the bottom, rising up to the top plate, cooling down and falling down again. The detailed behaviour shows subtle differences between the three cases.
 Publication:

Journal of Fluid Mechanics
 Pub Date:
 October 2015
 DOI:
 10.1017/jfm.2015.495
 arXiv:
 arXiv:1412.6299
 Bibcode:
 2015JFM...781..276L
 Keywords:

 Physics  Fluid Dynamics
 EPrint:
 doi:10.1017/jfm.2015.495