Sustained Accretion on Gas Giants Surrounded by Low-Turbulence Circumplanetary Disks
Abstract
Gas giants more massive than Saturn acquire most of their envelope while surrounded by a circumplanetary disk (CPD), which extends over a fraction of the planet’s Hill radius. Akin to circumstellar disks, CPDs may be subject to MRI-driven turbulence and contain low-turbulence regions, i.e., dead zones. It was suggested that CPDs may inhibit sustained gas accretion, thus limiting planet growth, because gas transport through a CPD may be severely reduced by a dead zone, a consequence at odds with the presence of Jupiter-mass (and larger) planets. We studied how an extended dead zone influences gas accretion on a Jupiter-mass planet, using global 3D hydrodynamics calculations with mesh refinements. The accretion flow from the circumstellar disk to the CPD is resolved locally at the length scale Rj, Jupiter's radius. The gas kinematic viscosity is assumed to be constant and the dead zone around the planet is modeled as a region of much lower viscosity, extending from ~Rj out to ~60Rj and off the mid-plane for a few CPD scale heights. We obtain accretion rates only marginally smaller than those reported by, e.g., D'Angelo et al. (2003), Bate et al. (2003), Bodenheimer et al. (2013), who applied the same constant kinematic viscosity everywhere, including in the CPD. As found by several previous studies (e.g., D’Angelo et al. 2003; Bate et al. 2003; Tanigawa et al. 2012; Ayliffe and Bate 2012; Gressel et al. 2013; Szulágyi et al. 2014), the accretion flow does not proceed through the CPD mid-plane but rather at and above the CPD surface, hence involving MRI-active regions (Turner et al. 2014). We conclude that the presence of a dead zone in a CPD does not inhibit gas accretion on a giant planet. Sustained accretion in the presence of a CPD is consistent not only with the formation of Jupiter but also with observed extrasolar planets more massive than Jupiter. We place these results in the context of the growth and migration of a pair of giant planets locked in the 2:1 mean motion resonance
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #47
- Pub Date:
- November 2015
- Bibcode:
- 2015DPS....4741806D