Variable Hard-X-Ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10
Abstract
We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ∼106 {{M}⊙ }. The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which “seed” BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- June 2015
- DOI:
- 10.1088/0004-637X/806/1/37
- arXiv:
- arXiv:1504.03331
- Bibcode:
- 2015ApJ...806...37W
- Keywords:
-
- galaxies: active;
- galaxies: dwarf;
- galaxies: evolution;
- galaxies: individual: Henize 2–10;
- X-rays: galaxies;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 7 pages, 4 figures, 2 tables