Assimilation and implications of AE-9/AP-9 in the design process of JPL missions
Abstract
The NASA AE-8/AP-8 has been the standard geospace environment specification for decades. This model describes the energetic particle environment around the Earth and is currently the default model used in the design of space missions at the Jet Propulsion Laboratory (JPL). Moreover, the model plays a critical role in the determination of the shielding and survivability of the satellites orbiting our planet. A recent update supported by the Air Force Research Laboratory (AFRL) and the National Reconnaissance Office (NRO), the AE-9/AP-9 model, was released in September 2012 and included many improvements like increased spatial resolution and the specification of the uncertainty due to instrument errors or space weather variability. A current effort at JPL is in place with the objective of making a decision within the Laboratory on the transition from AE-8/AP-8 to the new AE-9/AP-9. In this study we present the results of this effort, which involves the comparison between both versions of the model for different satellite orbits, the comparison between AE-9/AP-9 and in-situ satellite data from the Van Allen Probes and the OSTM/Jason 2 satellite, and the implications of adopting the new model for spacecraft design in terms of survivability, shielding, single event effects, and spacecraft charging.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMSM41A2471D
- Keywords:
-
- 7894 Instruments and techniques;
- SPACE PLASMA PHYSICS;
- 7924 Forecasting;
- SPACE WEATHER;
- 7934 Impacts on technological systems;
- SPACE WEATHER;
- 7959 Models;
- SPACE WEATHER