Fast damping of poloidal Alfven waves by bounce-resonant ions: observations and modeling
Abstract
Interplanetary shocks and solar wind dynamic pressure variations can excite intense ultra-low-frequency (ULF) waves in the inner magnetosphere. An analysis of two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001 shows that the poloidal waves excited in these events are damped away rapidly in tens of minutes. This damping is the result of wave-particle interactions involving H+ and O+ ions with energies in the range of several to a few tens of keV [Wang et al., J. Geophys. Res., 2015]. Damping is found to be more effective in the plasmasphere boundary layer due to the relatively higher proportion of Landau resonant ions that exists in that region. In the November 2004 shock event it has been suggested that energy-dispersed ions observed travelling parallel and anti-parallel direction to the geomagnetic field immediately after the shockare locally accelerated rather than originating from Earth's ionosphere. We use test-particle simulations to show that adiabatic advection of the particle differential flux caused bydrift-bounce-resonance with ULF waves is responsible for the energy-dispersed ions observed in these events. In the simulations,Liouville's theorem is used to reconstruct the iondistribution function and differential flux in a model dipole magnetosphere.It is shown that flux modulations of H and O ions can be reproduced when test-particle ions are advanced in the electric fields of the 3D ULF wave model we have developed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMSM21A2465W
- Keywords:
-
- 2772 Plasma waves and instabilities;
- MAGNETOSPHERIC PHYSICS;
- 2774 Radiation belts;
- MAGNETOSPHERIC PHYSICS;
- 2778 Ring current;
- MAGNETOSPHERIC PHYSICS;
- 7867 Wave/particle interactions;
- SPACE PLASMA PHYSICS