Characterizing Interplanetary Structures of Long-Lasting Ionospheric Storm Events
Abstract
Geomagnetic storms can result in periods of heightened TEC (Total Electron Content) in Earth's ionosphere. These periods of change in TEC (dTEC) can have adverse impacts on a technological society, such as scintillation of radio signals used by communication and navigation satellites. However, it is unknown which exact properties of a given storm cause dTEC. We are comparing different solar wind properties that result in a significant long-lasting dTEC to see if there are any patterns that remain constant in these storms. These properties, among others, include the interplanetary magnetic field By and Bz components, the proton density, and the flow speed. As a preliminary investigation, we have studied 15 solar storms. Preliminary results will be presented. In the future, we hope to increase our sample size and analyze over 80 different solar storms, which result in significant dTEC.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMSH51A2436T
- Keywords:
-
- 2139 Interplanetary shocks;
- INTERPLANETARY PHYSICS;
- 2441 Ionospheric storms;
- IONOSPHERE;
- 2788 Magnetic storms and substorms;
- MAGNETOSPHERIC PHYSICS;
- 7513 Coronal mass ejections;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY