3D Analysis of Remote-Sensed Heliospheric Data for Space Weather Forecasting
Abstract
The University of California, San Diego (UCSD) time-dependent iterative kinematic reconstruction technique has been used and expanded upon for over two decades. It currently provides some of the most accurate predictions and three-dimensional (3D) analyses of heliospheric solar-wind parameters now available using interplanetary scintillation (IPS) data. The parameters provided include reconstructions of velocity, density, and magnetic fields. Precise time-dependent results are obtained at any solar distance in the inner heliosphere using current Solar-Terrestrial Environment Laboratory (STELab), Nagoya University, Japan IPS data sets, but the reconstruction technique can also incorporate data from other IPS systems from around the world. With access using world IPS data systems, not only can predictions using the reconstruction technique be made without observation dead times due to poor longitude coverage or system outages, but the program can itself be used to standardize observations of IPS. Additionally, these analyses are now being exploited as inner-boundary values to drive an ENLIL 3D-MHD heliospheric model in real time. A major potential of this is that it will use the more realistic physics of 3D-MHD modeling to provide an automatic forecast of CMEs and corotating structures up to several days in advance of the event/features arriving at Earth, with or without involving coronagraph imagery or the necessity of magnetic fields being used to provide the background solar wind speeds.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMSH21B2396Y
- Keywords:
-
- 4305 Space weather;
- NATURAL HAZARDS;
- 7513 Coronal mass ejections;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7924 Forecasting;
- SPACE WEATHER;
- 7959 Models;
- SPACE WEATHER