Observation of summer daytime aurora in the noctilucent cloud layer and its link to high-energy particle precipitation during high-speed solar wind streams
Abstract
Aurora produced by precipitating low-energy electrons can be suppressed in summer daytime. However, the high-energy electrons (>30 keV) that are unsuppressed by sunlight are capable of penetrating deep into the mesosphere, where they can produce the odd hydrogen (HOx) and eventually lead to catalytic ozone (O3) loss. By elevating the D-region ionization level, they also play the important role of facilitating the production of polar mesospheric summer echoes (PMSE) as a precursor of polar mesospheric clouds (PMC). In the present study, it was discovered that high-energy electrons induce supersonic luminous phenomena, including the enhancement of O(1S) 557.7-nm emission with an intensity of up to 300 kR (horizontally integrated) and a supersonic velocity (300-1500 m s-1) as seen within a field of view that is 150-km wide, also called a supersonic burst (SB). SB-accompanied O(1S) emission enhancement is differentiated from aurora because the former occurs only in summer daytime, at a low altitude of ~80 km, and in the form of an intense localised burst. The source of the SB energy might be linked to the precipitation of high-energy electrons (>30 keV), especially as observed during high-speed solar wind streams (HSSs). In producing O(1S) emission, the secondary electron number flux of the precipitated primary electrons increases in magnitude by as much as an order of four, and a local process is required to provide the supplement. The supplementary local process may involve a supersonic velocity possibly caused by ion acceleration in a strong electric field, resulting in the inducement of electron acceleration in the field.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMSA13B2346L
- Keywords:
-
- 2499 General or miscellaneous;
- IONOSPHERE;
- 7899 General or miscellaneous;
- SPACE PLASMA PHYSICS