Coral Reef Response to Marine Isotope Stage (MIS) 5e Sea Level Changes in the Granitic Seychelles
Abstract
Sea-level position has a direct control on coral reef morphology and composition. Examining changes in these parameters in fossil reefs can inform reconstructions of past sea-level behavior and, indirectly, ice sheet dynamics. Here we provide a detailed examination of fossil reefs from Marine Isotope Stage (MIS) 5e. These fossil reefs are located in the granitic Seychelles, which is tectonically stable site and far-field from the former margins of Northern Hemisphere ice sheets. To reconstruct relative sea level (RSL), we combine RTK and Total Station elevation surveys with sedimentary and taxonomic evaluations of eight fossil reef sites. Carbonate coralgal reef buildups of the shallowest portion of the reef are preserved in limestone outcrops that are protected by granite boulder overhangs. Two primary outcrop morphologies were observed at these sites: plastering and massive. Plastering outcrops manifest as thin (~ 1 m height x 1 m width x 0.5 m depth) vertical successions of reef framework and detritus, while massive outcrops are larger (~ 2-6 m height x 2-6 m width x 1-2 m depth). The base of these limestone outcrops consistently record a period of reef growth, characterized by corals or coralline algae colonizing the surface or face of a granite boulder and building upwards. This lower reefal unit is capped by a disconformity that is commonly overlain by coral rubble or a ~10 cm thick layer of micrite. Rubble units contain coarse fragments of the coralgal reef buildups while micrite layers consist of a relatively homogeneous fine-grained carbonate, bearing coral-dwelling, Pyrgomatid barnacles. In many of the outcrops, this succession is repeated upsection with another unit of coralgal reef framework capped by a disconformity that is recognized by the sharp transition to coral rubble or micrite with barnacles. We identified four distinct fossil coralgal assemblages in the limestone outcrops. These assemblages are consistent with modern assemblages which constrain the paleo-water depth histories at each site. The combination of reef taxonomy as well as accretion hiatuses provides robust control on the reef, and thus sea-level, history of this region, and by extension, global mean sea level, during MIS 5e.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMPP43C2300V
- Keywords:
-
- 0726 Ice sheets;
- CRYOSPHERE;
- 1641 Sea level change;
- GLOBAL CHANGE;
- 3010 Gravity and isostasy;
- MARINE GEOLOGY AND GEOPHYSICS