Elucidating Geochemical Controls on the Concentration and Composition of Organic Carbon in Deep Pelagic Sediments
Abstract
In marine sediments, total organic carbon (OC) content correlates strongly with mineral surface area as well as the abundance of specific mineral classes such as clays and metal oxides. Adsorption to mineral surfaces and the formation of mineral-organic matter aggregates are thought to provide protection against remineralization, yet the extent and mechanism(s) of this protection are unknown. Accordingly, the goal of this research is to elucidate the role of minerals in preserving carbon and the potential for this reservoir of mineral-hosted carbon to support heterotrophic metabolisms in the otherwise carbon-poor subseafloor. Here, we characterize the composition of OC in oxic and suboxic sediments collected during R/V Knorr expedition 223 to the subtropical western North Atlantic in November 2014. We find that OC concentrations decrease linearly over ~25 meters burial depth, from ~0.15 to 0.075 mol OC/kg solid. Organic C/N varies but is consistently less than Redfield values of ~6. Relative contributions of functional groups quantified using bulk-scale Fourier transform infrared (FTIR) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy change with depth and site lithology/geochemistry. We further observe microscale heterogeneity, including discrete carbonate particles amid disperse aromatic and amide/carboxylic-rich organic carbon, using scanning transmission X-ray microscopy (STXM) coupled to NEXAFS. In the suboxic sediments, there is a transition from Mn(III/IV) phases toward more reduced phases shown by X-ray absorption spectroscopy between ~3-11 meters below core top, approximately between the interstitial water nitrate and nitrite maxima. Conversely, Fe(III)-bearing minerals are present throughout the core and may contribute to stabilization of OC. By further coupling micro- and macro-scale analysis, the role of minerals in OC sequestration in the marine subsurface will come to light.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMPP43A2251E
- Keywords:
-
- 4840 Microbiology and microbial ecology;
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL;
- 4851 Oxidation/reduction reactions;
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL;
- 4912 Biogeochemical cycles;
- processes;
- and modeling;
- PALEOCEANOGRAPHY;
- 4924 Geochemical tracers;
- PALEOCEANOGRAPHY