Preservation of REE and Fe isotopes in altered stromatolites and the paleo-environmental record
Abstract
Geochemical proxies are increasingly being used to unravel ancient ecosystems and environmental perturbations back to the earliest rock record on Earth. Along with more traditional fossils (stromatolites) and other biosignatures (e.g., lipids), the geochemical record is used specifically to evaluate biogenecity and to understand oxygenation of the atmosphere and ocean in the Archean and Paleoproterozoic. However, the effects of diagenesis, metamorphism, and other modes of secondary alteration are still poorly constrained, particularly as technological advances allow us to expand farther across the periodic table. Our study focused on the robustness and preservation of rare earth element (REE) and Fe isotope compositions of two stromatolitic units that have undergone contact and regional metamorphism. 18 samples were collected from cores, open pit mines, and field locations in Minnesota and Ontario from silicified iron formation (Biwabik-Gunflint formations). The samples were carefully constrained to one of two meter-scale stromatolitic units. Metamorphic grade ranged from essentially unmetamorphosed through prehnite-pumpellyite up to amphibolite (fayalite+hypersthene). Samples were also collected that represented deep secondary weathering, likely related to Cretaceous climatic extremes. Polished samples were first analyzed by electron microprobe and selected samples were further analyzed via laser ablation HR-ICP-MS to constrain trace element (n=13) and Fe isotopic variations (n=8). Preliminary results indicate that transition metal concentrations are surprisingly resilient to high-temperature metamorphic recrystallization. REE concentrations were analyzed in individual iron oxide grains, with full resolution (La to Lu) achieved for some samples and partial resolution (La to Nd) achieved for all samples. Core samples exhibited a relatively stable positive Ce anomaly occurring from low to extremely high alteration. Outcrop and mine samples indicate a shift from a negative Ce anomaly in less altered samples, to a positive Ce anomaly in highly altered samples. Collectively, our results imply that caution is warranted when making paleo-environmental inferences from samples with significantly different alteration histories.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMPP33B2302N
- Keywords:
-
- 0325 Evolution of the atmosphere;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0343 Planetary atmospheres;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 1030 Geochemical cycles;
- GEOCHEMISTRY