Northern tropical Atlantic climate since late Medieval times from Northern Caribbean coral geochemistry
Abstract
Paleoclimate reconstructions of different global climate modes over the last 1000 years provide the basis for testing the relative roles of forced and unforced variability climate system, which can help us improve projections of future climate change. The Medieval Climate Anomaly (MCA) has been characterized by a combination of persistent La Niña-like conditions, a positive North Atlantic Oscillation (+NAO), and increased Atlantic Meridional Overturning Circulation (AMOC). The northern tropical Atlantic is sensitive to each of these climate patterns, but not all of them have the same regional fingerprint in the modern northern tropical Atlantic. The relative influence of different processes related to these climate patterns can help us better understand regional responses to climate change. The regional response of the northern tropical Atlantic is important because the tropical Atlantic Ocean is a large source of heat and moisture to the global climate system that can feedback onto global climate patterns. This study presents new coral Sr/Ca and δ18O data from the northern tropical Atlantic (Anegada, British Virgin Islands). Comparison of the sub-fossil corals that grew during the 13th and 14th Centuries with modern coral geochemical data from this site indicates relatively cooler mean conditions with a decrease in the oxygen isotopic composition of the water consistent with lower salinities. Similar average annual cycles between modern and sub-fossil Sr/Ca indicate no change in seasonal temperature range, but a difference in the relative phasing of the δ18O seasonal cycles indicates that the fresher mean conditions may be due to a more northerly position of the regional salinity front. This localized response is consistent with some, but not all of the expected regional responses to a La Niña-like state, a +NAO state, and increased AMOC. Understanding these differences can provide insight into the relative importance of advection versus surface fluxes for heat and salt balances at the study site. Ultimately the data support the existing framework for understanding climate during the MCA and demonstrate the importance of regional processes in understanding historic and future climate patterns.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMPP22A..04K
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 3339 Ocean/atmosphere interactions;
- ATMOSPHERIC PROCESSES;
- 3344 Paleoclimatology;
- ATMOSPHERIC PROCESSES;
- 1620 Climate dynamics;
- GLOBAL CHANGE