Discovery of Seafloor Massive Sulfides in an Andesite-Dacite Knoll Caldera off Present-Day Volcanic Front, Izu-Ogasawara Island Arc, Japan
Abstract
We report the discovery of sulfide mounds with 20 to 30 m high sulfide chimneys in the Higashi-Aogashima hydrothermal field of a Quaternary andesite-dacite knoll caldera at the frontal arc side off Quaternary volcanic front, Izu-Ogasawara island arc, Japan. The discovery was carried out based on the systematic survey method of geological technique and a developed acoustic device using AUV. The knoll caldera 12 km east of Aogashima volcanic island is the size 10 km to 9 km of its rim and 820 m deep at its deepest caldera floor. According to the results of heavy mineral analysis for caldera sediments by a gravity corer, at least two areas were inferred to sites of potential hydrothermal activity associated with seafloor massive sulfides. After the precise acoustic survey using AUV there are many mound-like structures in the both inferred areas on the floor. Two major hydrothermal fields among them so far, which are a conical sulfide mound on the southeast flank of the central cone and a ridge-like mound on the inferred caldera boundary fault in the southeast, were confirmed based on sulfide samples recovered by a gravity corer during the next survey stage. One of them occurs at the water depth of 760 m to 770 m. It has active sulfide chimneys (ca. 20 m high) on the conical sulfide mound of about 40 m in diameter with 20 m high. Samples from the mound are composed of major sphalerite with moderate galena and barite, and minor chalcopyrite and pyrite. Another mound associated with chimneys at the water depth ranging from 740m to 770m on the southeast caldera boundary fault forms a small, east-west trend ridge-like shape. The ridge sizes more than 100 m long with 10 m wide. Chimneys are more than 30 m high. It is inferred that the mound is composed of major sphalerite and moderate barite based on samples cored at the margin of the mound. These results indicate that more than several sulfide mounds would be confirmed in the caldera floor by ROV surveys this September.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMNS23A1932I
- Keywords:
-
- 0920 Gravity methods;
- EXPLORATION GEOPHYSICS;
- 0925 Magnetic and electrical methods;
- EXPLORATION GEOPHYSICS;
- 0935 Seismic methods;
- EXPLORATION GEOPHYSICS;
- 1835 Hydrogeophysics;
- HYDROLOGY