Utilizing Satellite Precipitation Products to Understand the Link Between Climate Variability and Malaria
Abstract
Malaria is a public health threat to people globally leading to 198 million cases and 584,000 deaths annually. Outbreaks of vector borne diseases such as malaria can be significantly impacted by climate variables such as precipitation. For example, an increase in rainfall has the potential to create pools of water that can serve as breeding locations for mosquitos. Peru is a country that is currently controlling malaria, but has not been able to completely eliminate the disease. Despite the various initiatives in order to control malaria - including regional efforts to improve surveillance, early detection, prompt treatment, and vector management - malaria cases in Peru have risen between 2011 and 2014. The purpose of this study is to test the hypothesis that climate variability plays a fundamental role in malaria occurrence over a 12-year period (2003-2014) in Peru. When analyzing climate variability, it is important to obtain high-quality, high-resolution data for a time series long enough to draw conclusion about how climate variables have been and are changing. Remote sensing is a powerful tool for measuring and monitoring climate variables continuously in time and space. A widely used satellite-based precipitation product, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), available globally since 1998, was used to obtain 3-hourly data with a spatial resolution of 0.25° x 0.25°. The precipitation data was linked to weekly (2003-2014) malaria cases collected by health centers and available at a district level all over Peru to investigate the relationship between precipitation and the seasonal and annual variations in malaria incidence. Further studies will incorporate additional climate variables such as temperature, humidity, soil moisture, and surface pressure from remote sensing data products and climate models. Ultimately, this research will help us to understand if climate variability impacts malaria incidence rates and to determine which regions of the country are most affected.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMNH51A1852M
- Keywords:
-
- 1833 Hydroclimatology;
- HYDROLOGY;
- 1855 Remote sensing;
- HYDROLOGY;
- 4321 Climate impact;
- NATURAL HAZARDS;
- 4322 Health impact;
- NATURAL HAZARDS