Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics
Abstract
Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMNH41A1800M
- Keywords:
-
- 1130 Geomorphological geochronology;
- GEOCHRONOLOGY;
- 1826 Geomorphology: hillslope;
- HYDROLOGY;
- 4302 Geological;
- NATURAL HAZARDS;
- 4315 Monitoring;
- forecasting;
- prediction;
- NATURAL HAZARDS