Working towards a clearer and more helpful hazard map: investigating the influence of hazard map design on hazard communication
Abstract
Globally, geological hazards are communicated using maps. In traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map for stakeholder and public use. However, this one-way, top-down approach to hazard communication is not necessarily effective or reliable. The messages which people take away will be dependent on the way in which they read, interpret, and understand the map, a facet of hazard communication which has been relatively unexplored. Decades of cartographic studies suggest that variables in the visual representation of data on maps, such as colour and symbology, can have a powerful effect on how people understand map content. In practice, however, there is little guidance or consistency in how hazard information is expressed and represented on maps. Accordingly, decisions are often made based on subjective preference, rather than research-backed principles. Here we present the results of a study in which we explore how hazard map design features can influence hazard map interpretation, and we propose a number of considerations for hazard map design. A series of hazard maps were generated, with each one showing the same probabilistic volcanic ashfall dataset, but using different verbal and visual variables (e.g., different colour schemes, data classifications, probabilistic formats). Following a short pilot study, these maps were used in an online survey of 110 stakeholders and scientists in New Zealand. Participants answered 30 open-ended and multiple choice questions about ashfall hazard based on the different maps. Results suggest that hazard map design can have a significant influence on the messages readers take away. For example, diverging colour schemes were associated with concepts of "risk" and decision-making more than sequential schemes, and participants made more precise estimates of hazard with isarithmic data classifications compared to binned or gradational shading. Based on such findings, we make a number of suggestions for communicating hazard using maps. Most importantly, we emphasise that multiple meanings may be taken away from a map, and this may have important implications in a crisis. We propose that engaging with map audiences in a two-way dialogue in times of peace may help prevent miscommunications in the event of a crisis.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMNH13A1918T
- Keywords:
-
- 4334 Disaster risk communication;
- NATURAL HAZARDS;
- 4352 Interaction between science and disaster management authorities;
- NATURAL HAZARDS