Frictional melting experiments investigate coseismic behaviour of pseudotachylyte-bearing faults in the Outer Hebrides Fault Zone, UK.
Abstract
Recent experimental studies, performed at seismic slip rates (≥ 1 m/s), suggest that the friction coefficient of seismic faults is significantly lower than at sub-seismic (< 1 mm/s) speeds. Microstructural observations, integrated with theoretical studies, suggest that the weakening of seismic faults could be due to a range of thermally-activated mechanisms (e.g. gel, nanopowder and melt lubrication, thermal pressurization, viscous flow), triggered by frictional heating in the slip zone. The presence of pseudotachylyte within both exhumed fault zones and experimental slip zones in crystalline rocks suggests that lubrication plays a key role in controlling dynamic weakening during rupture propagation. The Outer Hebrides Fault Zone (OHFZ), UK contains abundant pseudotachylyte along faults cutting varying gneissic lithologies. Our field observations suggest that the mineralogy of the protolith determines volume, composition and viscosity of the frictional melt, which then affects the coseismic weakening behaviour of the fault and has important implications for the magnitudes and distribution of stress drops during slip episodes. High velocity friction experiments at 18 MPa axial load, 1.3 ms-1 and up to 10 m slip were run on quartzo-feldspathic, metabasic and mylonitic samples, taken from the OHFZ in an attempt to replicate its coseismic frictional behaviour. These were configured in cores of a single lithology, or in mixed cores with two rock types juxtaposed. All lithologies produce a general trend of frictional evolution, where an initial peak followed by transient weakening precedes a second peak which then decays to a steady state. Metabasic and felsic single-lithology samples both produce sharper frictional peaks, at values of μ = 0.19 and μ= 0.37 respectively, than the broader and smaller (μ= 0.15) peak produced by a mixed basic-felsic sample. In addition, both single-lithology peaks occur within 0.2 m slip, whereas the combined-lithology sample displays a slower transition to the steady state, with the peak occurring after almost 2 m. Our results show that the frictional behaviour of faults in crystalline rocks, where different lithologies are in contact, is complex. Protolith composition determines the physical properties of the melt, which controls the evolution of coseismic friction.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMMR33C2692C
- Keywords:
-
- 3902 Creep and deformation;
- MINERAL PHYSICS;
- 3924 High-pressure behavior;
- MINERAL PHYSICS;
- 8118 Dynamics and mechanics of faulting;
- TECTONOPHYSICS;
- 8163 Rheology and friction of fault zones;
- TECTONOPHYSICS