Volatile-refractory element reactions and breakdown of refractory oxides under conditions of a giant impact
Abstract
Whereas much or most of the highly volatile elements reside in atmosphere and oceans, understanding the global budget of these elements requires knowledge about their abundance in the Earth's interior. One piece of this puzzle is the early history of the Earth where large impacts, notably giant impacts, provided conditions where both volatile and refractory elements were mixed on atomic scale in extremely hot dense fluids. Carbides and nitrides that have recently been found in mantle rock are possible remnants of such large scale dynamic pressure-temperature conditions. In particular carbides and nitrides of lithophile refractory elements like Zr, Hf, Nb, Ta may remain in the mantle for extended time and contribute to the mantle geochemical budget of these elements as well as that of C and N. In a first step towards testing such a hypothesis, we conducted a series of shock experiments. Deflagration of C-N-O-H compounds was triggered by shockwaves. The resulting reaction wave front propagated into aggregates of refractory minerals like zircon, baddeleyite, rutile. This fluid-solid mix was subjected to shock compression to shock pressures of 20-50 GPa and temperatures in the range of 0.5-1.104 K by means of reverberating shock. Recovered sample material was analyzed by synchrotron X-ray diffraction and by EPMA.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMMR13A2683T
- Keywords:
-
- 3924 High-pressure behavior;
- MINERAL PHYSICS;
- 3934 Optical;
- infrared;
- and Raman spectroscopy;
- MINERAL PHYSICS;
- 3954 X-ray;
- neutron;
- and electron spectroscopy and diffraction;
- MINERAL PHYSICS;
- 3994 Instruments and techniques;
- MINERAL PHYSICS