Satellite Estimates of Crop Area and Maize Yield in Zambia's Agricultural Districts
Abstract
Predicting crop yield and area from satellite is a valuable tool to monitor different aspects of productivity dynamics and food security. In Sub-Saharan Africa, where the agricultural landscape is complex and dominated by smallholder systems, such dynamics need to be investigated at the field scale. We leveraged the large data pool and computational power of Google Earth Engine to 1) generate 30 m resolution cover maps of selected provinces of Zambia, 2) estimate crop area, and 3) produce yearly maize yield maps using the recently developed SCYM (Scalable satellite-based Crop Yield Mapper) algorithm. We will present our results and their validation against a ground survey dataset collected yearly by the Zambia Ministry of Agriculture from about 12,500 households.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMGC13H1249A
- Keywords:
-
- 0402 Agricultural systems;
- BIOGEOSCIENCES;
- 1630 Impacts of global change;
- GLOBAL CHANGE;
- 1632 Land cover change;
- GLOBAL CHANGE;
- 1640 Remote sensing;
- GLOBAL CHANGE