A Carbon Monitoring System Approach to US Coastal Wetland Carbon Fluxes: Progress Towards a Tier II Accounting Method with Uncertainty Quantification
Abstract
Despite their high rates of long-term carbon (C) sequestration when compared to upland ecosystems, coastal C accounting is only recently receiving the attention of policy makers and carbon markets. Assessing accuracy and uncertainty in net C flux estimates requires both direct and derived measurements based on both short and long term dynamics in key drivers, particularly soil accretion rates and soil organic content. We are testing the ability of remote sensing products and national scale datasets to estimate biomass and soil stocks and fluxes over a wide range of spatial and temporal scales. For example, the 2013 Wetlands Supplement to the 2006 IPCC GHG national inventory reporting guidelines requests information on development of Tier I-III reporting, which express increasing levels of detail. We report progress toward development of a Carbon Monitoring System for "blue carbon" that may be useful for IPCC reporting guidelines at Tier II levels. Our project uses a current dataset of publically available and contributed field-based measurements to validate models of changing soil C stocks, across a broad range of U.S. tidal wetland types and landuse conversions. Additionally, development of biomass algorithms for both radar and spectral datasets will be tested and used to determine the "price of precision" of different satellite products. We discuss progress in calculating Tier II estimates focusing on variation introduced by the different input datasets. These include the USFWS National Wetlands Inventory, NOAA Coastal Change Analysis Program, and combinations to calculate tidal wetland area. We also assess the use of different attributes and depths from the USDA-SSURGO database to map soil C density. Finally, we examine the relative benefit of radar, spectral and hybrid approaches to biomass mapping in tidal marshes and mangroves. While the US currently plans to report GHG emissions at a Tier I level, we argue that a Tier II analysis is possible due to national maps of wetland area and soil carbon, as well as sediment accretion and sea-level rise correlations and wetland area change data. The uncertainty analyses performed nationally and in six regionally-representative "sentinel sites" will be an important guide for future efforts towards more accurate and complete wetland C inventories.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMGC11B1047W
- Keywords:
-
- 0315 Biosphere/atmosphere interactions;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 1631 Land/atmosphere interactions;
- GLOBAL CHANGE;
- 1694 Instruments and techniques;
- GLOBAL CHANGE