Multi-frequency acoustic derivation of particle size using 'off-the-shelf" ADCPs.
Abstract
Suspended sediment particle size in rivers is of great interest due to its influence on riverine and coastal morphology, socio-economic viability, and ecological health and restoration. Prediction of suspended sediment transport from hydraulics remains a stubbornly difficult problem, particularly for the washload component, which is controlled by sediment supply from the drainage basin. This has led to a number of methods for continuously monitoring suspended sediment concentration and mean particle size, the most popular currently being hydroacoustic methods. Here, we explore the possibility of using theoretical inversion of the sonar equation to derive an estimate of mean particle size and standard deviation of the grain size distribution (GSD) using three 'off-the-shelf' acoustic Doppler current profiles (ADCP) with frequencies of 300, 600 and 1200 kHz. The instruments were deployed in the sand-bedded reach of the Fraser River, British Columbia. We use bottle samples collected in the acoustic beams to test acoustics signal inversion methods. Concentrations range from 15-300 mg/L and the suspended load at the site is ~25% sand, ~75 % silt/clay. Measured mean particle radius from samples ranged from 10-40 microns with relative standard deviations ranging from 0.75 to 2.5. Initial results indicate the acoustically derived mean particle radius compares well with measured particle radius, using a theoretical inversion method adapted to the Fraser River sediment.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMEP53A0938H
- Keywords:
-
- 1824 Geomorphology: general;
- HYDROLOGY;
- 1825 Geomorphology: fluvial;
- HYDROLOGY;
- 1826 Geomorphology: hillslope;
- HYDROLOGY;
- 1886 Weathering;
- HYDROLOGY