Early Pliocene Hiatus in Sand Output by the Colorado River: Evidence From Marine Deposits in the Salton Trough, Southern California
Abstract
Early Pliocene deposits in the western Salton Trough preserve a high-fidelity record of sediment dispersal into the marine realm during initiation and early evolution of the Colorado River (CR). Grain-size fractionation, sediment routing, and transport dynamics of the early CR delta are recorded in sediments of the Fish Creek - Vallecito basin, which was located ~100 km south of Yuma along the transform plate boundary at 5 Ma. Early Pliocene delivery of CR sand to the basin took place in two distinct pulses: (1) deposition of sandy turbidites (Wind Caves Mbr of the Latrania Fm) in a restricted submarine canyon at Split Mt Gorge between ~5.3 and 5.1 Ma; and (2) progradation of a thick, widespread, coarsening-up deltaic sequence of marine mudstone, sandstone, and coquinas (Deguynos Fm) between ~4.8 and 4.2 Ma. Estimated flux of CR sediment during Wind Caves deposition was weak (~3-5 Mt/yr) compared to the long-term average (172±64 Mt/yr). The two pulses of CR sand input are separated by the Coyote Clay (CC, ~5.1-4.8 Ma), a regionally correlable, greenish-yellow-weathering marine claystone unit at the base of the Deguynos Fm. CC gradationally overlies Wind Caves turbidites in the area of the paleocanyon. In contrast, in the Coyote Mts 15-23 km to the south and SE, CC rests on coarse-grained locally-derived late Miocene sedimentary rocks, Alverson volcanics, and metamorphic basement rock along a regional unconformity. Identical claystone facies occur in the NW Indio Hills (restores to Yuma at the mouth of the CR at 5 Ma), and Sierra Cucapa in Mexico (~200 km south of Yuma at 5 Ma). Marine localities outside of the Wind Caves paleocanyon experienced slow to negligible sedimentation along a rugged rocky shoreline until abrupt arrival of CR-derived clay. CC accumulated in a sand-starved, pro-delta marine setting (Winker, 1987) over an inferred N-S distance of ~200 km. We therefore reject an alternate hypothesis that CC accumulated on the muddy slope of the prograding CR delta (Cloos, 2014). The CC records a pronounced 200-300 Kyr hiatus in delivery of sand from the CR to the basin at ca. 5 Ma that requires a regional explanation. The hiatus could have been caused by (1) global sea-level rise, (2) accelerated basin subsidence, or (3) tectonic damming and ponding of the lower CR by fault-related bedrock uplift in the Chocolate Mts.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMEP33E..07D
- Keywords:
-
- 1625 Geomorphology and weathering;
- GLOBAL CHANGE;
- 1862 Sediment transport;
- HYDROLOGY;
- 3022 Marine sediments: processes and transport;
- MARINE GEOLOGY AND GEOPHYSICS;
- 4217 Coastal processes;
- OCEANOGRAPHY: GENERAL