Structural Evolution of a Fold-And-Thrust Belt in Hsinchu-Miaoli area, Taiwan
Abstract
Hsinchu-Miaoli area is the major hydrocarbon producing fields in Taiwan. Oil and gas production in the area have been explored and produced since 1861, and the oldest gas field is still producing gas until now. To understand the nature and the geometry of the reservoirs in this area, 82 wells were drilled in the Chinshui Field, which is one of the important gas fields in the Hsinchu-Miaoli area. However, the subsurface structures and fracture distribution of these fields are still unclear, and the reason for the long time producing is also unknown. Fractures in the oil-bearing reservoir might be one of the important factors of the long time gas producing, but the fracture reservoirs attaining hydrocarbons associated with fault-related folding need to be further clarified. First, we represent a new structural interpretation of Chinshui and adjacent Chuhuangkeng anticlines by a geological cross section across from Miaoli offshore to inner foothills. By comparing the total shortening distances among several published cross sections and the profile in this study, we construct the deformation pattern model in Hsinchu-Miaoli area. Furthermore, we then use Discrete Element Method (DEM) to reconstruct the evolution model of the Chinshui anticline based on the cross sections in the study area. This model can provide fracture densities of Chinshui anticline and also the geometry of potential hydrocarbon reservoirs. According to the result of our restoration, the total shortening distance of the geological cross section is about 20.3km and the entire slip of the deep thrust faults in Chinshui anticline is 5.8 km. This result is similar with previous published cross sections around this region. And the structural evolution of Chinshui anticline would further apply in the model of fracture distribution and densities.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.T43A2971C
- Keywords:
-
- 7221 Paleoseismology;
- SEISMOLOGY;
- 8107 Continental neotectonics;
- TECTONOPHYSICS;
- 8123 Dynamics: seismotectonics;
- TECTONOPHYSICS;
- 8175 Tectonics and landscape evolution;
- TECTONOPHYSICS