Fluvial Record of Active Deformation Along the Canyon River Fault in the Wynoochee River Valley, WA
Abstract
Ongoing uplift of the Olympic Peninsula of Washington State represents unknown contributions from Cascadia subduction zone processes, including earthquakes, interseismic deformation, aseismic slow slip events, and north-south shortening of the North American plate focused on upper plate faults. The relationship between upper plate faults and Cascadia subduction is poorly understood, as is the seismic hazard posed by these structures to the greater Puget Sound region. The Wynoochee River is a south-flowing drainage in the southern Olympic Mountains bisected by a previously uncharacterized section of the Canyon River reverse fault. In this study we utilize high-resolution aerial lidar and optically stimulated luminescence (OSL) dating of offset fluvial terraces to determine the kinematics and slip rate of the Canyon River fault over the late Quaternary. In combination with surficial geologic mapping and differential GPS surveys of terrace straths observed in the field, we also determine incision rates along the Wynoochee River from OSL dates. Our mapping reveals eight generations of fluvial and glaciofluvial terraces, with twenty-one pending ages from OSL sampling of fluvial sands intercalated with outwash and river gravels. Additionally, we compare our slip rate results with a boundary element model, estimating the stress on the Canyon River fault over the recent decades, as constrained by GPS data from the Cascadia subduction zone. Preliminary results indicate that the Canyon River fault is a long-lived feature with south-side-up and left-lateral displacement. Taken together, our results enable comparison of deformation rates constrained by short-term, geodetic data with those acting over longer-term geologic time scales.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.T33C2944D
- Keywords:
-
- 1209 Tectonic deformation;
- GEODESY AND GRAVITY;
- 7240 Subduction zones;
- SEISMOLOGY;
- 8031 Rheology: crust and lithosphere;
- STRUCTURAL GEOLOGY;
- 8170 Subduction zone processes;
- TECTONOPHYSICS