Mantle Flow Pattern and Dynamic Topography beneath the Eastern US
Abstract
The complex tectonic history of the eastern US over the past billion years includes episodes of subduction and rifting associated with two complete cycles of supercontinent assembly and breakup. Both the previous global tomography models (S40RTS, SAVANI, TX2011, GyPSuM, SMEAN) and the analysis of the shear-wave splitting from the broadband seismic stations find a distinct coast-to-inland differentiation pattern in the lithosphere and upper mantle. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) includes a dense linear seismic array from the Atlantic coast of Virginia to the western boarder of Ohio, crossing several different tectonic zones. To derive the regional mantle flow pattern along with its surface expression such as dynamic topography and aid the interpretation of the seismic observations, we are building a new geodynamic model based on ASPECT (Advanced Solver for Problems in Earth CovecTion) that uses buoyancy derived from seismic tomography along with realistic lithosphere and sub-lithosphere structure. At present, we use S40RTS and SAVANI tomography models together with the temperature-dependent viscosity to compute the mantle flow and dynamic topography. Beneath the eastern US, the upper mantle flow in our model is primarily parallel to the trend of the Appalachian belt, which is broadly consistent with the direction of the local shear-wave splitting. The dynamic topography results exhibit a coast-to-inland magnitude differentiation along the MAGIC seismic deployment. The numerical tests also show that both the magnitude and pattern of the dynamic topography are quite sensitive to the density perturbation and rigidity of the lithosphere/sub-lithosphere. Our future work involves using other tomography and viscosity models to obtain the mantle flow pattern as well as the resulting dynamic topography and geoid.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.T11D2934L
- Keywords:
-
- 1020 Composition of the continental crust;
- GEOCHEMISTRY;
- 7205 Continental crust;
- SEISMOLOGY;
- 8110 Continental tectonics: general;
- TECTONOPHYSICS