Combining DSMC Simulations and ROSINA/COPS Data of Comet 67P/Churyumov-Gerasimenko to Develop a Realistic Empirical Coma Model and to Determine Accurate Production Rates
Abstract
We have previously published results from the AMPS DSMC (Adaptive Mesh Particle Simulator Direct Simulation Monte Carlo) model and its characterization of the neutral coma of comet 67P/Churyumov-Gerasimenko through detailed comparison with data collected by the ROSINA/COPS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/COmet Pressure Sensor) instrument aboard the Rosetta spacecraft [Bieler, 2015]. Results from these DSMC models have been used to create an empirical model of the near comet coma (<200 km) of comet 67P. The empirical model characterizes the neutral coma in a comet centered, sun fixed reference frame as a function of heliocentric distance, radial distance from the comet, local time and declination. The model is a significant improvement over more simple empirical models, such as the Haser model. While the DSMC results are a more accurate representation of the coma at any given time, the advantage of a mean state, empirical model is the ease and speed of use. One use of such an empirical model is in the calculation of a total cometary coma production rate from the ROSINA/COPS data. The COPS data are in situ measurements of gas density and velocity along the ROSETTA spacecraft track. Converting the measured neutral density into a production rate requires knowledge of the neutral gas distribution in the coma. Our empirical model provides this information and therefore allows us to correct for the spacecraft location to calculate a production rate as a function of heliocentric distance. We will present the full empirical model as well as the calculated neutral production rate for the period of August 2014 - August 2015 (perihelion).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.P31E2104H
- Keywords:
-
- 6040 Origin and evolution;
- PLANETARY SCIENCES: COMETS AND SMALL BODIES;
- 6045 Physics and chemistry of materials;
- PLANETARY SCIENCES: COMETS AND SMALL BODIES;
- 6099 General or miscellaneous;
- PLANETARY SCIENCES: COMETS AND SMALL BODIES