Titan's Polar Atmosphere
Abstract
Cassini CIRS and Radio-Occultation measurements obtained in 2004-2015 have tracked the evolution of temperatures and winds in Titan's polar atmosphere, as the winter season shifted from the northern hemisphere to the southern. The dissolution of the strong circumpolar vortex initially seen in the northern hemisphere has been gradual. There is no evidence of the rapid distortion and disruption forced by planetary waves that can occur on Earth. Indeed, neither Cassini experiment has identified any thermal signature attributable to planetary-scale waves. The south-polar region has turned wintry fairly abruptly: temperature and zonal wind maps from CIRS data show that the 1-mbar temperatures at high southern latitudes in late autumn are already much colder than those at the corresponding latitudes in the north in midwinter, when the first extensive polar measurements were obtained. The south-polar region now has a strong circumpolar vortex, with maximum stratospheric winds occurring near 60° S, in contrast to the northern hemisphere in winter, where the polar vortex was much broader, extending to 20°-30° N. Potential vorticity maps now indicate steep meridional gradients at high southern latitudes, implying a barrier to efficient mixing between the polar region and lower latitudes. Radio-occultations have higher vertical resolution than CIRS, and they have recently probed latitudes as high as 65° in both hemispheres (latitudes closer to the pole are precluded because of the geometry of Earth occultations and the season). Above 80 km at these latitudes, where the radiative damping times are small enough that temperatures have large seasonal variations, the stratosphere in the north has warmed, and it has become much colder in the south. The abrupt transition region with negative vertical temperature gradient between 80 and 100 km, which was seen at high northern latitudes in winter, has weakened, but it is still visible. In the south, one can see the early stage of its formation. A key question is whether the more compact polar vortex and colder temperatures seen in the south will evolve to the conditions observed in the north in midwinter, or whether the poles behave asymmetrically. Observations from the remainder of the Cassini Mission can elucidate this.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.P12B..07F
- Keywords:
-
- 2732 Magnetosphere interactions with satellites and rings;
- MAGNETOSPHERIC PHYSICS;
- 2756 Planetary magnetospheres;
- MAGNETOSPHERIC PHYSICS;
- 6281 Titan;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 5480 Volcanism;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS