Carbon Dioxide Mineralization in the Presence of Convective Mixing and the Capillary Transition Zone
Abstract
Dissolution of carbon dioxide (CO2) is one of the major trapping mechanisms for carbon storage in saline aquifers. Due to a small density increase when CO2 dissolves in brine, convection cells may establish and greatly enhance the rate at which CO2 is dissolved. This important and complex process has been then a topic of large interest in the community over the last decade. We have previously shown that there is an interaction between the Capillary Transition Zone (CTZ) in the CO2 plume, and convective mixing, and that this causes significantly enhanced dissolution rates compared to a scenario that most authors have used with no flow across this interface. The rate of dissolution from the plume may also be affected by mineral reactions. Andres and Cardoso [1] showed that for the mineralization of CO2 due to silicate dissolution followed by precipitation of carbonate and clay, there is a threshold reaction rate above which convection does not appear. However, they do not account for the CTZ or depletion of the silicate. We study the impact of the CTZ on convective mixing, in a system that features mineralization of CO2. The reactivity is enhanced with CO2 concentration and with the amount of silicate (anorthite). Results from linear stability analysis and numerical simulations support each other. The rate of CO2 dissolution can be an order of magnitude enhanced by mineralization, when the CTZ and depletion of the anorthite are accounted for. Limiting reaction rates for convection are established as a function of the characteristics of the CTZ.[1] Andres, J.T.H. and Cardoso, S.S.S. 2011. Onset of convection in a porous medium in the presence of chemical reaction. Physical Review E (83), 046312.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H41C1328E
- Keywords:
-
- 1012 Reactions and phase equilibria;
- GEOCHEMISTRY;
- 1858 Rocks: chemical properties;
- HYDROLOGY;
- 3947 Surfaces and interfaces;
- MINERAL PHYSICS;
- 3653 Fluid flow;
- MINERALOGY AND PETROLOGY