How Population Growth and Land-Use Change Increased Fluvial Dissolved Organic Carbon Fluxes over 130 Years in the Thames Basin (UK)
Abstract
This study investigates drivers of changing dissolved organic carbon (DOC) export in the UK's River Thames basin between 1884 and 2014. Specifically, we consider how the impacts of land-use change and population growth drive increases in DOC concentrations and fluxes at the basin outlet. Such key factors for the long-term increase in riverine DOC in temperate, mineral-soil catchments are still widely debated. First, we estimate soil organic carbon (SOC) stocks in the Thames basin for the period. Second, we convert SOC losses due to land-use change into DOC loss to surface waters through runoff. Finally, we combine this input of DOC with an export coefficient model that considers catchment drivers for DOC release to the river. SOC stocks for each year are calculated from a large database of typical SOC levels for land-uses present in the Thames basin and are combined with literature values of transition times for SOC to adjust to a new level following land-use change. We also account for climate change effects on SOC stock due to temperature increases, which reduces SOC stocks as soil organic matter turnover rates increase. Our work shows that the major driver for DOC increase to the river Thames was the rise in the catchment population, where the increase in urban area was used as a proxy. This highlights the role of sewage effluent in contributing to the rise of fluvial DOC, even though wastewater treatments were in place since the early 1990s. Land-use change had significant but short-term impacts in the increase in DOC, mainly due to massive conversion of permanent grassland into arable land during World War II.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H33H1700N
- Keywords:
-
- 1871 Surface water quality;
- HYDROLOGY;
- 1884 Water supply;
- HYDROLOGY