Multi-scale Drivers of Variations in Atmospheric Evaporative Demand Based on Observations and Physically-based Modeling
Abstract
Evapotranspiration (ET) is a key link between the availability of water resources and climate change and climate variability. Variability of ET has important environmental and socioeconomic implications for managing hydrological hazards, food and energy production. Although there have been many observational and modeling studies of ET, how ET has varied and the drivers of the variations at different temporal scales remain elusive. Much of the uncertainty comes from the atmospheric evaporative demand (AED), which is the combined effect of radiative and aerodynamic controls. The inconsistencies among modeled AED estimates and the limited observational data may originate from multiple sources including the limited time span and uncertainties in the data. To fully investigate and untangle the intertwined drivers of AED, we present a spectrum analysis to identify key controls of AED across multiple temporal scales. We use long-term records of observed pan evaporation for 1961-2006 from 317 weather stations across China and physically-based model estimates of potential evapotranspiration (PET). The model estimates are based on surface meteorology and radiation derived from reanalysis, satellite retrievals and station data. Our analyses show that temperature plays a dominant role in regulating variability of AED at the inter-annual scale. At the monthly and seasonal scales, the primary control of AED shifts from radiation in humid regions to humidity in dry regions. Unlike many studies focusing on the spatial pattern of ET drivers based on a traditional supply and demand framework, this study underlines the importance of temporal scales when discussing controls of ET variations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H31F1493P
- Keywords:
-
- 1818 Evapotranspiration;
- HYDROLOGY;
- 1836 Hydrological cycles and budgets;
- HYDROLOGY;
- 1843 Land/atmosphere interactions;
- HYDROLOGY;
- 1854 Precipitation;
- HYDROLOGY