Actively Heated Fiber Optics for Distributed Soil Moisture Measurements: Addressing Field Calibration and Spatial Variability
Abstract
The Actively Heated Fiber Optics (AHFO) method has the potential to measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. This game-changing method can capture soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m). However, many challenges remain to resolve for the practical applicability of the AHFO at the field scale. In particular, cost effective distributed calibration method that accounts for the spatial variability of the soil thermal properties is still lacking. In fact, AHFO infers soil water content from observing the thermal response of the soil to a heat pulse injected along the fiber optic cable. For a particular location, the temporal variation of the soil thermal response depends mainly on the soil moisture content. Across the field the variability of thermal response will also be a function of the soil thermal properties which change with the soil mineralogy and bulk density. Here we present various strategies for distributed calibration of the AHFO method based on numerical simulation, direct field observation, and/or laboratory experimentation. In particular we will present a novel approach for mapping the soil thermal behavior by conducting AHFO measurements at strategic soil water conditions such as near saturation and dry conditions. We will show results from a large scale deployment at the MOISST site in Stillwater, Oklahoma where 4900 m of fiber optic soil moisture sensing cables are providing daily soil moisture measurements at >39,000 locations in the field. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H23B1582S
- Keywords:
-
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1866 Soil moisture;
- HYDROLOGY;
- 1873 Uncertainty assessment;
- HYDROLOGY;
- 1875 Vadose zone;
- HYDROLOGY