Effects of Nanoscale Surface Roughness on Colloid Detachment
Abstract
Recent advances in colloid transport science have demonstrated the importance of surface roughness on colloid attachment; however, few studies have investigated the influence of nano-scale roughness on colloid detachment. This study explores the effects of flow perturbations on a variety of mineral surfaces, as well as NaOH treated (i.e. rough, Figure 1a) and untreated (i.e. smooth, Figure 1b) surfaces for colloids of various sizes attached in an impinging jet system under flowing and stagnant conditions. These experiments showed minimal detachment from the roughened surfaces (treated glass) and significant detachment from the smooth surfaces (untreated glass and mica). A correlation between residence time and attachment irreversibility was also revealed, indicating that the particles that spent the longest time attached to the surface developed the strongest adhesion. The representative surface-heterogeneity model developed by Pazmino et al. (2014) was used to conduct detachment simulations under similar geochemical and flow conditions. While simulated results show qualitative agreement with experimental results, they tend to over-predict detachment, highlighting differences among simulated versus real surfaces, which may be related to surface roughness. These results suggest that more sophisticated models that incorporate surface roughness and time-based adhesion are needed to accurately predict colloid detachment in environmental systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H21G1464R
- Keywords:
-
- 0402 Agricultural systems;
- BIOGEOSCIENCES;
- 0465 Microbiology: ecology;
- physiology and genomics;
- BIOGEOSCIENCES;
- 1831 Groundwater quality;
- HYDROLOGY;
- 1875 Vadose zone;
- HYDROLOGY