Downstream cumulative effects of land use on freshwater communities
Abstract
Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities. These findings clearly demonstrate that in watersheds which are disturbed by intensive land use, the eco-hydrological linkages between biota and fluvial processes significantly differ from those in more natural and forested landscapes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H21D1402K
- Keywords:
-
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1632 Land cover change;
- GLOBAL CHANGE;
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1836 Hydrological cycles and budgets;
- HYDROLOGY