High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments
Abstract
Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.B33B0658C
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0452 Instruments and techniques;
- BIOGEOSCIENCES;
- 0454 Isotopic composition and chemistry;
- BIOGEOSCIENCES;
- 0465 Microbiology: ecology;
- physiology and genomics;
- BIOGEOSCIENCES