Response of Soil Respiration to Repeated Extreme Events in a Temperate Beech Forest in Austria
Abstract
Climate change research predicts an increase in weather extremes like severe droughts and heavy rainfalls in central Europe. Since soil moisture is one of the most important drivers of soil respiration, a change in precipitation regime is likely to influence ecosystem C cycling. During drying of soils, soil microbial activity decreases and dead microbial cells, osmolytes, and semi-decomposed organic matter accumulate. When dry soils are rewetted, this easily-decomposable C leads to a pulse in soil respiration, a phenomenon known as "Birch-effect". In terms of annual soil CO2emissions, it is not clear whether these post-wetting respiration pulses outweigh or even overcompensate preceding drought-induced reductions in soil respiration. To investigate the impact of repeated drought and heavy rainfall events, a two-year precipitation manipulation experiment was conducted in an Austrian beech forest. Experimental plots were covered with transparent roofs to exclude rainfall, and an irrigation system was used to simulate heavy rainfall events. Control plots received natural precipitation. Soil respiration was monitored 3-hourly with an automatic static chamber system connected to an infrared CO2 analyzer. Soil temperature (Tsoil) and volumetric water content (VWC) were recorded with a datalogger. Various statistical models were tested to describe the relationship between soil respiration, Tsoiland VWC. Our results showed that repeated extreme events strongly reduced variation in soil respiration. Droughts significantly reduced soil respiration, and reductions depended on the length of the drought period. Post-wetting respiration pulses did not outweigh drought-induced reductions. Temperature sensitivity of soil respiration was best described with a Lloyd & Taylor model. Furthermore, in stressed plots VWC became limiting for soil respiration. Overall, our data corroborate the importance of the precipitation regime for soil respiration.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.B21F0535L
- Keywords:
-
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCES;
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1631 Land/atmosphere interactions;
- GLOBAL CHANGE