Quantitative Nutrient Limitation Analysis of Global Forests by Remote Sensing
Abstract
Nutrient availability in terrestrial ecosystems may be the primary determinant of the long-term carbon storage capacity of vegetation. Both nutrient availability and carbon storage capacity are highly uncertain and limit our ability to predict atmospheric CO2 concentrations. Terrestrial vegetation, especially forests, play a critical role in regulating the global carbon cycle and Earth's climate by sequestering carbon from the atmosphere. The broad relationship between nutrient availability and increased biomass production can be captured using remotely-sensed spectral information. We develop an approach to estimate total nutrient availability in 848 global forest sites at 1-km spatial resolution by combining the ecological principle of functional convergence with MODIS gross primary productivity (GPP) and evapotranspiration (ET) products from 2000-2013. Convergence in the relationship between maximum GPP and ET of nutrient-rich forests indicate that any sites deviating from this upper-limit are associated with a lower availability of nutrients. This method offers a way to examine the severity, as well as the spatial extent of nutrient limitation at the global scale. We find that the degree to which forests are nutrient limited range between 0% and 81% with an average limitation of 16 ± 17%. Our method agrees with regional nutrient gradients (i.e. SW-NE Amazon), but does not tightly correspond with recently published nutrient limitation classification standards (Fernandez-Martinez et al., 2014). A global terrestrial nutrient limitation map can assist in diagnosing the health of vegetation while removing the necessity for extensive field sampling or local nutrient addition experiments. Further research will expand the study sites to obtain a complete global terrestrial nutrient limitation map.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.B11C0453L
- Keywords:
-
- 3322 Land/atmosphere interactions;
- ATMOSPHERIC PROCESSES;
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 1622 Earth system modeling;
- GLOBAL CHANGE