Climatology of extratropical transition for North Atlantic tropical cyclones in the high-resolution GFDL climate model
Abstract
The extratropical transition (ET) process of tropical cyclones can lead to fundamental changes in hurricane structure and storms that continue to pose large threats to life and properties. Given the importance of ET, it is necessary to understand how ET changes under a warming climate. Towards this goal, the GFDL climate model (FLOR) is first used to understand the current-day ET climatology. The standard model and a flux-adjusted version of FLOR are both used to examine ET climatology. The operational cyclone phase space method is used to define the onset and completion times of ET. The ET climatology from the climate model is compared with those from two reanalysis data sets ranging from 1979 to 2012. Both models exhibit good skills at simulating the frequency map of phase space diagram. The flux-adjusted version shows much better skill in capturing the ET climatology in terms of ET track patterns, ET locations and monthly ET variations. The model is able to simulate the frequency ratio of reintensified tropical cyclones from all ET cases. Future work involves examining changes in the ET climatology under a changing climate.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.A51P0338L
- Keywords:
-
- 3315 Data assimilation;
- ATMOSPHERIC PROCESSES;
- 3360 Remote sensing;
- ATMOSPHERIC PROCESSES;
- 3372 Tropical cyclones;
- ATMOSPHERIC PROCESSES;
- 4313 Extreme events;
- NATURAL HAZARDS