Aerosol-stratocumulus Interactions over the Southeast Pacific: A Process Study Using WRF-Chem
Abstract
The recent WRF study by Chen et al. (2015) showed that the shortwave radiative forcing by the stratocumulus over the southeast Pacific (SEP) is much enhanced by anthropogenic aerosols from South America. Here we further investigate the aerosol-stratocumulus interactions on the process level using the WRF-Chem model which explicitly simulates the aerosol emissions and formations. Two cloud microphysics schemes are used: the widely-applied Lin scheme and the physics-based two-moment scheme used in Chen et al. (2015). The simulations with the Lin scheme captured some observed features of aerosols (e.g., aerosol mass and optical depth decreases westward along 20°S) and key aerosol-cloud microphysics interactions (e.g., more cloud droplet numbers near the coast). However, biases were also noticed, such as the overestimation of cloud droplet number near the coast, and the underestimation of aerosol concentration over the remote ocean. These could be caused by the inadequacy in cloud process parameterization, such as a lack of aerosol recycling from rain droplets in coupling with chemistry and microphysical modules (Saide et al, 2012). The two-moment scheme that explicitly addresses these processes is expected to minimize the biases. Detailed investigations of the cloud microphysics processes using the two schemes, and, to the extent possible, comparisons with observations will be presented and discussed. Chen, G.-X., W.-C. Wang, and J.-P. Chen, 2015: Aerosol-stratocumulus-radiation interactions over Southeast Pacific. J. Atmos. Sci., 72, 2612-2621. Saide, P. E. (and 16 co-authors), 2012: Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx, Atmos. Chem. Phys., 12, 3045-3064.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.A51I0186Q
- Keywords:
-
- 3307 Boundary layer processes;
- ATMOSPHERIC PROCESSES;
- 3311 Clouds and aerosols;
- ATMOSPHERIC PROCESSES;
- 3323 Large eddy simulation;
- ATMOSPHERIC PROCESSES;
- 3360 Remote sensing;
- ATMOSPHERIC PROCESSES