Characterization of smoke aerosols over the Indochina Peninsula from multi-platform satellite observations
Abstract
Multi-faceted near-simultaneous observations from the sensors aboard multiple satellite platforms, so called the A-Train, are utilized to characterize the spatial distributions and the optical properties of smoke aerosols over the Indochina Peninsula. Observations from the A-Train sensors, especially, MODerate resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), are synthesized to retrieve single-scattering albedo (SSA) and effective aerosol layer height (ALH) of BBS aerosols in the region. The retrieval algorithm extracts the absorption and height information about smoke aerosols, which is lumped into ultraviolet spectra at the top of the atmosphere, by taking the most reliable information contents that each satellite measurement can deliver. The results of retrieved SSA and ALH showed reasonable agreements with in-situ measurements, AEROsol Robotic NETwork (AERONET) data, and lidar-based observations. The uncertainty and sensitivity of the retrieval algorithm are also presented. The retrieved quantities are then used together with other satellite datasets to characterize the three-dimensional distributions of smoke aerosols over the Indochina Peninsular during the boreal spring time. Given the frequent horizontal collocations of smoke and clouds in the region, implication of smoke vertical distributions for long-range transports is also discussed. The results of this study are anticipated to advance our understanding on the climatic impacts of the smoke aerosols in the region.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.A43A0262J
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0319 Cloud optics;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0320 Cloud physics and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0321 Cloud/radiation interaction;
- ATMOSPHERIC COMPOSITION AND STRUCTURE