Exploiting Representation of the Aerosol-Radiation interactions in Climate Systems: Observation-based Analyses and Global Climate Modeling
Abstract
Aerosols affect the Earth's climate by perturbing the radiation budget through scattering and absorption of solar radiation and emitting thermal infrared radiation (defined and referred to as aerosol direct effect). At first order, it is essential for a model to realistically represent the distributions of clouds, convection, aerosol profiles and their associated radiative properties (cloud fraction and effective radius), which are critical for simulating Earth's surface energy and water budgets. The representation of aerosols and their radiative properties remains problematic both in retrieval and modeling. Up to now, the representation of aerosol optical depth (AOD) in GCMs is still far from agreement with the observation. We evaluate the aerosol simulations from the 20th century CMIP5 simulations, and investigate the biases in aerosol loadings against observations. AOD and retrieved aerosol types (e.g., sea salt, organic matter, sulfate) from MISR, MODIS, and CALIPSO satellite observations are utilized to compare with model simulated aerosols. The impacts of the biases of modeled AOD and cloud fraction on aerosol direct effects in GCMs will be presented.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.A33G0252C
- Keywords:
-
- 0321 Cloud/radiation interaction;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3311 Clouds and aerosols;
- ATMOSPHERIC PROCESSES;
- 3314 Convective processes;
- ATMOSPHERIC PROCESSES;
- 3322 Land/atmosphere interactions;
- ATMOSPHERIC PROCESSES