Evaluating WRF Simulations of Urban Boundary Layer Processes during DISCOVER-AQ
Abstract
The accurate representation of processes in the planetary boundary layer (PBL) in meteorological models is of prime importance to air quality and greenhouse gas simulations as it governs the depth to which surface emissions are vertically mixed and influences the efficiency by which they are transported downwind. In this work we evaluate high resolution (~1 km) WRF simulations of PBL processes in the Washington DC - Baltimore and Houston urban areas during the respective DISCOVER-AQ 2011 and 2013 field campaigns using MPLNET micro-pulse lidar (MPL), mini-MPL, airborne high spectral resolution lidar (HSRL), Doppler wind profiler and CALIPSO satellite measurements along with complimentary surface and aircraft measurements. We will discuss how well WRF simulates the spatiotemporal variability of the PBL height in the urban areas and the development of fine-scale meteorological features such as bay and sea breezes that influence the air quality of the urban areas studied.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.A33B0143H
- Keywords:
-
- 3307 Boundary layer processes;
- ATMOSPHERIC PROCESSES;
- 3322 Land/atmosphere interactions;
- ATMOSPHERIC PROCESSES;
- 3379 Turbulence;
- ATMOSPHERIC PROCESSES;
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCES