Evaluating Changes in Extreme Weather During the North American Monsoon in the Southwest U.S. Using High Resolution, Convective-Permitting Regional Atmospheric Modeling
Abstract
The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. Monsoon convection typically initiates during daytime over the mountains and may organize into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. A convective resolving grid spacing (on the kilometer scale) model is required to explicitly represent the physical characteristics of organized convection, for example the presence of leading convective lines and trailing stratiform precipitation regions. Our objective is to analyze how monsoon severe weather is changing in relation to anthropogenic climate change. We first consider a dynamically downscaled reanalysis during a historical period 1948-2010. Individual severe weather event days, identified by favorable thermodynamic conditions, are then simulated for short-term, numerical weather prediction-type simulations of 30h at a convective-permitting scale. Changes in modeled severe weather events indicate increases in precipitation intensity in association with long-term increases in atmospheric instability and moisture, particularly with organized convection downwind of mountain ranges. However, because the frequency of synoptic transients is decreasing during the monsoon, organized convection is less frequent and convective precipitation tends to be more phased locked to terrain. These types of modeled changes also similarly appear in observed CPC precipitation, when the severe weather event days are selected using historical radiosonde data. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future with respect to occurrence and intensity and if these changes correspond with what is already occurring in the historical record. The CMIP5 models we are downscaling (HadGEM2-ES and MPI-ESM-LR) will be included as part of North American COordinated Regional climate Downscaling EXperiment (CORDEX). Results from this project will be used for climate change impacts assessment for U.S. military installations in the region.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.A11F0101C
- Keywords:
-
- 3337 Global climate models;
- ATMOSPHERIC PROCESSES;
- 3355 Regional modeling;
- ATMOSPHERIC PROCESSES;
- 1622 Earth system modeling;
- GLOBAL CHANGE;
- 1637 Regional climate change;
- GLOBAL CHANGE