Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions
Abstract
Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, kdensest subgraph) are NPhard. Furthermore, the goal is rarely to find the "true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine relationships among them. Current dense subgraph finding algorithms usually optimize some objective, and only find a few such subgraphs without providing any structural relations. We define the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which enables discovering overlapping dense subgraphs. With the right parameters, the nucleus decomposition generalizes the classic notions of kcores and ktruss decompositions. We give provably efficient algorithms for nucleus decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other stateoftheart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.
 Publication:

arXiv eprints
 Pub Date:
 November 2014
 arXiv:
 arXiv:1411.3312
 Bibcode:
 2014arXiv1411.3312E
 Keywords:

 Computer Science  Social and Information Networks