Asymptotic spectral distributions of distance $k$-graphs of star product graphs
Abstract
Let $G$ be a finite connected graph and let $G^{[\star N,k]}$ be the distance $k$-graph of the $N$-fold star power of $G$. For a fixed $k\geq1$, we show that the large $N$ limit of the spectral distribution of $G^{[\star N,k]}$ converges to a centered Bernoulli distribution, $1/2\delta_{-1}+1/2\delta_1$. The proof is based in a fourth moment lemma for convergence to a centered Bernoulli distribution.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2014
- DOI:
- 10.48550/arXiv.1408.5682
- arXiv:
- arXiv:1408.5682
- Bibcode:
- 2014arXiv1408.5682A
- Keywords:
-
- Mathematics - Probability;
- Mathematics - Functional Analysis;
- 05C50 (Primary);
- 05C12 (Secondary);
- 47A10;
- 81S25
- E-Print:
- 10 pages, 4 figures